Skip to main content

A Review of Bayesian Modelling in Glaciology

  • Chapter
  • First Online:
Statistical Modeling Using Bayesian Latent Gaussian Models

Abstract

Bayesian methods for modelling and inference are being increasingly used in the cryospheric sciences and glaciology in particular. Here, we present a review of recent works in glaciology that adopt a Bayesian approach when conducting an analysis. We organise the chapter into three categories: (i) Gaussian–Gaussian models, (ii) Bayesian hierarchical models, and (iii) Bayesian calibration approaches. In addition, we present two detailed case studies that involve the application of Bayesian hierarchical models in glaciology. The first case study is on the spatial prediction of surface mass balance across the Icelandic mountain glacier Langjökull, and the second is on the prediction of sea-level rise contributions from the Antarctic ice sheet. This chapter is presented in such a way that it is accessible to both statisticians and Earth scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Sweden)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Sweden)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Sweden)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.globalmass.eu.

  2. 2.

    https://arcsaef.com/.

References

  • Aðalgeirsdóttir, G., Jóhannesson, T., Björnsson, H., Pálsson, F., & Sigurðsson, O. (2006). Response of Hofsjökull and Southern Vatnajökull, Iceland, to climate change. Journal of Geophysical Research: Earth Surface, 111(F3), F03001.

    Article  Google Scholar 

  • Babaniyi, O., Nicholson, R., Villa, U., & Petra, N. (2021). Inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty. The Cryosphere, 15(4), 1731–1750.

    Article  Google Scholar 

  • Bakka, H., Rue, H., Fuglstad, G.-A., Riebler, A., Bolin, D., Illian, J., Krainski, E., Simpson, D., & Lindgren, F. (2018). Spatial modeling with R-INLA: A review. Wiley Interdisciplinary Reviews: Computational Statistics, 10(6), e1443.

    Article  MathSciNet  Google Scholar 

  • Berliner, L. M. (2003). Physical-statistical modeling in geophysics. Journal of Geophysical Research: Atmospheres, 108(D24), D248776.

    Article  Google Scholar 

  • Berliner, L. M., Jezek, K., Cressie, N., Kim, Y., Lam, C. Q., & van der Veen, C. J. (2008). Modeling dynamic controls on ice streams: A Bayesian statistical approach. Journal of Glaciology, 54(187), 705–714.

    Article  Google Scholar 

  • Blatter, H. (1995). Velocity and stress-fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients. Journal of Glaciology, 41(138), 333–344.

    Article  Google Scholar 

  • Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859–877.

    Article  MathSciNet  Google Scholar 

  • Brinkerhoff, D., Aschwanden, A., & Fahnestock, M. (2021). Constraining subglacial processes from surface velocity observations using surrogate-based Bayesian inference. Journal of Glaciology, 67(263), 385–403.

    Article  Google Scholar 

  • Brinkerhoff, D. J., Aschwanden, A., & Truffer, M. (2016). Bayesian inference of subglacial topography using mass conservation. Frontiers in Earth Science, 4, 8.

    Article  Google Scholar 

  • Brynjarsdóttir, J., & O’Hagan, A. (2014). Learning about physical parameters: The importance of model discrepancy. Inverse Problems, 30(11), 114007.

    Article  MathSciNet  MATH  Google Scholar 

  • Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., & Bowman, L. N. (2005). Exact solutions and verification of numerical models for isothermal ice sheets. Journal of Glaciology, 51(173), 291–306.

    Article  Google Scholar 

  • Chang, W., Haran, M., Applegate, P., & Pollard, D. (2016). Calibrating an ice sheet model using high-dimensional binary spatial data. Journal of the American Statistical Association, 111(513), 57–72.

    Article  MathSciNet  Google Scholar 

  • Chuter, S. J., Zammit-Mangion, A., Rougier, J., Dawson, G., & Bamber, J. L. (2021). Mass evolution of the Antarctic Peninsula over the last two decades from a joint Bayesian inversion. The Cryosphere Discussions. https://doi.org/10.5194/tc-2021-178

  • Conrad, P. R., Davis, A. D., Marzouk, Y. M., Pillai, N. S., & Smith, A. (2018). Parallel local approximation MCMC for expensive models. SIAM/ASA Journal on Uncertainty Quantification, 6(1), 339–373.

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N., & Wikle, C. K. (2011). Statistics for spatio-temporal data. Hoboken: Wiley.

    MATH  Google Scholar 

  • Cuffey, K. M., & Paterson, W. (2010). The physics of glaciers (4th ed.). Cambridge: Academic Press.

    Google Scholar 

  • Director, H. M., Raftery, A. E., & Bitz, C. M. (2021). Probabilistic forecasting of the Arctic sea ice edge with contour modeling. The Annals of Applied Statistics, 15(2), 711–726.

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R., Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., & Wernecke, A. (2019). Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature, 566(7742), 58–64.

    Article  Google Scholar 

  • Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S., Edwards, T., Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A., & Yu, Y. (2021). Ocean, cryosphere and sea level change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, & B. Zhou (Eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., & Thies, J. (2013). Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geoscientific Model Development, 6(4), 1299–1318.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). New York: CRC Press.

    Book  MATH  Google Scholar 

  • Gillet-Chaulet, F. (2020). Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter. The Cryosphere, 14(3), 811–832.

    Article  Google Scholar 

  • Girolami, M., & Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B, 73(2), 123–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Golub, G. H., & Van Loan, C. F. (2012). Matrix computations (3rd ed.). Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  • Gopalan, G. (2019). Spatio-Temporal Statistical Models for Glaciology. PhD Thesis, University of Iceland.

    Google Scholar 

  • Gopalan, G., Hrafnkelsson, B., Aðalgeirsdóttir, G., Jarosch, A. H., & Pálsson, F. (2018). A Bayesian hierarchical model for glacial dynamics based on the shallow ice approximation and its evaluation using analytical solutions. The Cryosphere, 12(7), 2229–2248.

    Article  Google Scholar 

  • Gopalan, G., Hrafnkelsson, B., Aðalgeirsdóttir, G., & Pálsson, F. (2021). Bayesian inference of ice softness and basal sliding parameters at Langjökull. Frontiers in Earth Science, 9, 610069.

    Article  Google Scholar 

  • Gopalan, G., Hrafnkelsson, B., Wikle, C. K., Rue, H., Aðalgeirsdóttir, G., Jarosch, A. H., & Pálsson, F. (2019). A hierarchical spatiotemporal statistical model motivated by glaciology. Journal of Agricultural, Biological and Environmental Statistics, 24(4), 669–692.

    Article  MathSciNet  MATH  Google Scholar 

  • Guan, Y., Haran, M., & Pollard, D. (2018). Inferring ice thickness from a glacier dynamics model and multiple surface data sets. Environmetrics, 29(5–6), e2460.

    Article  MathSciNet  Google Scholar 

  • Guan, Y., Sampson, C., Tucker, J. D., Chang, W., Mondal, A., Haran, M., and Sulsky, D. (2019). Computer model calibration based on image warping metrics: An application for sea ice deformation. Journal of Agricultural, Biological and Environmental Statistics, 24(3), 444–463.

    Article  MathSciNet  MATH  Google Scholar 

  • Gunter, B., Didova, O., Riva, R., Ligtenberg, S., Lenaerts, J., King, M., Van den Broeke, M., & Urban, T. (2014). Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. The Cryosphere, 8(2), 743–760.

    Article  Google Scholar 

  • Higdon, D., Gattiker, J., Williams, B., & Rightley, M. (2008). Computer model calibration using high-dimensional output. Journal of the American Statistical Association, 103(482), 570–583.

    Article  MathSciNet  MATH  Google Scholar 

  • Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., & Steltzer, H. (2019). High mountain areas. In H.-O. Pörtner, D. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (Eds.), IPCC special report on the ocean and cryosphere in a changing climate. https://www.ipcc.ch/srocc/chapter/chapter-2/

  • Hooten, M. B., Leeds, W. B., Fiechter, J., & Wikle, C. K. (2011). Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models. Journal of Agricultural, Biological, and Environmental Statistics, 16(4), 475–494.

    Article  MathSciNet  MATH  Google Scholar 

  • Irarrazaval, I., Werder, M. A., Linde, N., Irving, J., Herman, F., & Mariethoz, G. (2019). Bayesian inference of subglacial channel structures from water pressure and tracer-transit time data: A numerical study based on a 2-D geostatistical modeling approach. Journal of Geophysical Research: Earth Surface, 124(6), 1625–1644.

    Article  Google Scholar 

  • Isaac, T., Petra, N., Stadler, G., & Ghattas, O. (2015). Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet. Journal of Computational Physics, 296, 348–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Ivins, E. R., James, T. S., Wahr, J., O. Schrama, E. J., Landerer, F. W., & Simon, K. M. (2013). Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. Journal of Geophysical Research: Solid Earth, 118(6), 3126–3141.

    Google Scholar 

  • Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B, 63(3), 425–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Klauenberg, K., Blackwell, P. G., Buck, C. E., Mulvaney, R., Röthlisberger, R., & Wolff, E. W. (2011). Bayesian Glaciological Modelling to quantify uncertainties in ice core chronologies. Quaternary Science Reviews, 30(21), 2961–2975.

    Article  Google Scholar 

  • Larour, E., Seroussi, H., Morlighem, M., & Rignot, E. (2012). Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). Journal of Geophysical Research: Earth Surface, 117(F1), F01022.

    Article  Google Scholar 

  • Lee, B. S., Haran, M., Fuller, R. W., Pollard, D., & Keller, K. (2020). A fast particle-based approach for calibrating a 3-D model of the Antarctic ice sheet. The Annals of Applied Statistics, 14(2), 605–634.

    Article  MathSciNet  MATH  Google Scholar 

  • Lenaerts, J. T., Van den Broeke, M., Van de Berg, W., Van Meijgaard, E., & Kuipers Munneke, P. (2012). A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophysical Research Letters, 39(4).

    Google Scholar 

  • Ligtenberg, S., Helsen, M., & Van den Broeke, M. (2011). An improved semi-empirical model for the densification of Antarctic firn. The Cryosphere, 5(4), 809–819.

    Article  Google Scholar 

  • Lindgren, F., & Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63(1).

    Google Scholar 

  • Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B, 73(4), 423–498.

    Article  MathSciNet  MATH  Google Scholar 

  • MacAyeal, D. (1989). Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream B, Antarctica. Journal of Geophysical Research, 94(B4), 4071–4087.

    Article  Google Scholar 

  • MacAyeal, D. (1993). A tutorial on the use of control methods in ice-sheet modeling. Journal of Glaciology, 39(131), 91–98.

    Article  Google Scholar 

  • Martín-Español, A., Zammit-Mangion, A., Clarke, P. J., Flament, T., Helm, V., King, M. A., Luthcke, S. B., Petrie, E., Rémy, F., Schön, N., et al. (2016). Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research: Earth Surface, 121(2), 182–200.

    Article  Google Scholar 

  • McNeall, D. J., Challenor, P. G., Gattiker, J., & Stone, E. J. (2013). The potential of an observational data set for calibration of a computationally expensive computer model. Geoscientific Model Development, 6(5), 1715–1728.

    Article  Google Scholar 

  • Minchew, B., Simons, M., Hensley, S., Björnsson, H., & Pálsson, F. (2015). Early melt season velocity fields of Langjökull and Hofsjökull, central Iceland. Journal of Glaciology, 61(226), 253–266.

    Article  Google Scholar 

  • Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., et al. (2020). Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 13(2), 132–137.

    Article  Google Scholar 

  • Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., & Aubry, D. (2010). Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophysical Research Letters, 37(14).

    Google Scholar 

  • Morlighem, M., Seroussi, H., Larour, E., & Rignot, E. (2013). Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher-order model. Journal of Geophysical Research, 118(3), 1746–1753.

    Article  Google Scholar 

  • Murray, I., Adams, R., & MacKay, D. (2010). Elliptical slice sampling. In Y. W. Teh, & M. Titterington (Eds.), Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research (pp. 541–548). Sardinia, Italy. PMLR.

    Google Scholar 

  • Pálsson, F., Guðmundsson, S., Björnsson, H., Berthier, E., Magnússon, E., Guðmundsson, S., & Haraldsson, H. H. (2012). Mass and volume changes of Langjökull ice cap, Iceland, 1890 to 2009, deduced from old maps, satellite images and in situ mass balance measurements. Jökull, 62(2012), 81–96.

    Article  Google Scholar 

  • Patil, A., Huard, D., & Fonnesbeck, C. J. (2010). PyMC: Bayesian stochastic modelling in Python. Journal of Statistical Software, 35(4), 1.

    Article  Google Scholar 

  • Pattyn, F. (2003). A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. Journal of Geophysical Research: Solid Earth, 108(B8), 1–15.

    Article  Google Scholar 

  • Petra, N., Martin, J., Stadler, G., & Ghattas, O. (2014). A computational framework for infinite-dimensional Bayesian inverse problems, Part II: Stochastic Newton MCMC with application to ice sheet flow inverse problems. SIAM Journal on Scientific Computing, 36(4), A1525–A1555.

    Article  MathSciNet  MATH  Google Scholar 

  • Pollard, D., & DeConto, R. M. (2009). Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458(7236), 329–332.

    Article  Google Scholar 

  • Pralong, M. R., & Gudmundsson, G. H. (2011). Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data. Journal of Glaciology, 57(202), 315–324.

    Article  Google Scholar 

  • Raymond, M. J., & Gudmundsson, G. H. (2009). Estimating basal properties of ice streams from surface measurements: A non-linear Bayesian inverse approach applied to synthetic data. The Cryosphere, 3(2), 265–278.

    Article  Google Scholar 

  • Riva, R. E., Gunter, B. C., Urban, T. J., Vermeersen, B. L., Lindenbergh, R. C., Helsen, M. M., Bamber, J. L., van de Wal, R. S., van den Broeke, M. R., & Schutz, B. E. (2009). Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth and Planetary Science Letters, 288(3–4), 516–523.

    Article  Google Scholar 

  • Rounce, D. R., Khurana, T., Short, M. B., Hock, R., Shean, D. E., & Brinkerhoff, D. J. (2020). Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: Application to High Mountain Asia. Journal of Glaciology, 66(256), 175–187.

    Article  Google Scholar 

  • Ruckert, K. L., Shaffer, G., Pollard, D., Guan, Y., Wong, T. E., Forest, C. E., & Keller, K. (2017). Assessing the impact of retreat mechanisms in a simple Antarctic ice sheet model using Bayesian calibration. PLOS ONE, 12(1), e0170052.

    Article  Google Scholar 

  • Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B, 71(2), 319–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Rutt, I. C., Hagdorn, M., Hulton, N., & Payne, A. (2009). The Glimmer community ice sheet model. Journal of Geophysical Research: Earth Surface, 114(F2), F02004.

    Article  Google Scholar 

  • Schoen, N., Zammit-Mangion, A., Rougier, J., Flament, T., Rémy, F., Luthcke, S., & Bamber, J. (2015). Simultaneous solution for mass trends on the West Antarctic Ice Sheet. The Cryosphere, 9(2), 805–819.

    Article  Google Scholar 

  • Simpson, D., Rue, H., Riebler, A., Martins, T. G., & Sørbye, S. H. (2017). Penalising model component complexity: A principled, practical approach to constructing priors. Statistical Science, 32(1), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Solin, A., & Särkkä, S. (2020). Hilbert space methods for reduced-rank Gaussian process regression. Statistics and Computing, 30(2), 419–446.

    Article  MathSciNet  MATH  Google Scholar 

  • Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • van der Veen, C. (2013). Fundamentals of glacier dynamics (2nd ed.). Florida: CRC Press.

    Book  Google Scholar 

  • Werder, M. A., Huss, M., Paul, F., Dehecq, A., & Farinotti, D. (2020). A Bayesian ice thickness estimation model for large-scale applications. Journal of Glaciology, 66(255), 137–152.

    Article  Google Scholar 

  • Zammit-Mangion, A., Rougier, J., Bamber, J., & Schön, N. (2014). Resolving the Antarctic contribution to sea-level rise: A hierarchical modelling framework. Environmetrics, 25(4), 245–264.

    Article  MathSciNet  Google Scholar 

  • Zammit-Mangion, A., Rougier, J., Schön, N., Lindgren, F., & Bamber, J. (2015). Multivariate spatio-temporal modelling for assessing Antarctica’s present-day contribution to sea-level rise. Environmetrics, 26(3), 159–177.

    Article  MathSciNet  Google Scholar 

  • Zhang, B., & Cressie, N. (2020). Bayesian inference of spatio-temporal changes of Arctic sea ice. Bayesian Analysis, 15(2), 605–631.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Zammit-Mangion was supported by the Australian Research Council (ARC) Discovery Early Career Research Award (DECRA) DE180100203. McCormack was supported by the ARC DECRA DE210101433. Zammit-Mangion and McCormack were also supported by the ARC Special Research Initiative in Excellence in Antarctic Science (SRIEAS) Grant SR200100005 Securing Antarctica’s Environmental Future. The authors would like to thank Bao Vu for help with editing the manuscript, as well as Haakon Bakka for providing a review of an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giri Gopalan .

Editor information

Editors and Affiliations

Appendix: Governing Equations

Appendix: Governing Equations

For ease of exposition, in this appendix, we omit notation that establishes dependence of a variable or parameter on space and time. All variables and parameters should be assumed to be a function of space and time unless otherwise indicated.

Modelling ice-sheet flow relies on the classical laws of conservation of momentum, mass, and energy. For incompressible ice flow, conservation of momentum is described by the full Stokes equations:

$$\displaystyle \begin{aligned} \nabla\cdot\boldsymbol{\sigma} + \rho \boldsymbol{g} &= \boldsymbol{0}, \end{aligned} $$
(11)
$$\displaystyle \begin{aligned} \text{Tr}(\boldsymbol{\dot{\varepsilon}})&=0, \end{aligned} $$
(12)

where \(\nabla \cdot \boldsymbol {\sigma }\) is the divergence vector of the stress tensor \(\boldsymbol {\sigma }\), \(\rho \) is the constant ice density, \(\boldsymbol {g}\) is the constant gravitational acceleration, \(\boldsymbol {\dot {\varepsilon }}\) is the strain rate tensor, and \(\text{Tr}\) is the trace operator. The stress and strain rates are related by the material constitutive relation:

$$\displaystyle \begin{aligned} \boldsymbol{\sigma'}=2\eta\boldsymbol{\dot{\varepsilon}}, \end{aligned} $$
(13)

where \(\boldsymbol {\sigma '}=\boldsymbol {\sigma }+p\boldsymbol {I}\) is the deviatoric stress tensor, p is the pressure, \(\boldsymbol {I}\) is the identity matrix, and \(\eta \) is the viscosity. Boundary conditions for the mechanical model typically assume a stress-free ice surface and the specification of a friction or sliding law at the ice–bedrock interface.

A number of simplifications to the full Stokes equations exist, including the three-dimensional model from Blatter (1995) and Pattyn (2003), the two-dimensional shallow-shelf approximation (MacAyeal, 1989), and the two-dimensional shallow-ice approximation (Hutter, 1983).

Conservation of mass is described by the mass transport equation:

$$\displaystyle \begin{aligned} \frac{\partial H}{\partial t}+\nabla\cdot H\boldsymbol{v} = M_s + M_b, \end{aligned} $$
(14)

where \(\boldsymbol {v}\) is the horizontal velocity, H is the ice thickness, \(M_s\) is the surface mass balance, and \(M_b\) is the basal mass balance. For regional models of ice flow, the thickness is prescribed at the inflow boundaries, and a free-flux boundary condition is typically applied at the outflow boundary.

Finally, conservation of energy is described by the following equation:

$$\displaystyle \begin{aligned} \frac{\partial T}{\partial t} = (\boldsymbol{w}-\boldsymbol{v})\cdot\nabla T+\frac{k}{\rho c}\varDelta T+\frac{\varPhi}{\rho c}, \end{aligned} $$
(15)

where \(\boldsymbol {v}\) is the horizontal velocity, \(\boldsymbol {w}\) is the vertical velocity, T is the ice temperature, k is the constant thermal conductivity, c is the constant heat capacity, and \(\varPhi \) is the heat production term. The boundary conditions typically constitute a Dirichlet boundary condition at the ice surface, a relation for the geothermal and frictional heating at the base of the ice sheet, and a relation for the heat transfer at the ice–ocean interface.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gopalan, G., Zammit-Mangion, A., McCormack, F. (2023). A Review of Bayesian Modelling in Glaciology. In: Hrafnkelsson, B. (eds) Statistical Modeling Using Bayesian Latent Gaussian Models . Springer, Cham. https://doi.org/10.1007/978-3-031-39791-2_2

Download citation

Publish with us

Policies and ethics

Navigation